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c© Società Italiana di Fisica

Springer-Verlag 2001

Hadronic corrections at O(α2) to the energy spectrum
of muon decay�

A.I. Davydycheva,b, K. Schilcher, H. Spiesbergerc

Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany

Received: 24 November 2000 / Published online: 5 February 2001 – c© Springer-Verlag 2001

Abstract. We consider the impact of O(α2) hadronic corrections to the energy spectrum of the decay
electron in muon decay. We find that the correction can be described, within good approximation, by a
linear function in the electron energy. Explicit expressions for the form factors needed in an approach based
on dispersion integrals are given.

1. Testing the electroweak sector of the Standard Model
requires to fix the coupling constants of the Lagrangian by
relating a number of high-precision experiments to theo-
retical predictions. Ideally, experimental data and theoret-
ical predictions should be known with comparable preci-
sion. Apart from the electromagnetic coupling constant α
and the Z-boson massmZ , the input of choice is the muon
life time τµ, with the present best value τµ = (2.19703 ±
0.00004)µs [1]. Experiments are planned at the Paul
Scherrer Institute [2] and the Rutherford Appleton Labo-
ratory [3] which would reduce the experimental error on
the muon life time by more than one order of magnitude.

These experimental data have reached such a precision
that quantum corrections can be observed. To match this
accuracy from the theory side, two-loop radiative correc-
tions to the muon decay in the full electroweak Standard
Model are needed. This is a formidable, but not impos-
sible, task. A step in this direction is the calculation of
the purely electromagnetic corrections to order α2 in the
Fermi theory, which has been performed by van Ritber-
gen and Stuart [5,6] (see also [7]). Besides that, also the
O(Nfα

2) corrections in the Standard Model have been
considered in [8,9].

It is well known that the decoupling theorem is not ap-
plicable to the life time calculation, which means that it is
mandatory to also include the contribution of the heavy
degrees of freedom. In contrast, the decoupling theorem
is fully applicable to the normalized electron energy spec-
trum in muon decay, which has also been measured with
an amazing accuracy at the per-mille level. Again the ex-
perimental error is expected to be reduced by more than
one order of magnitude in a future experiment at TRI-
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UMF [4]. The spectrum calculation is different from the
one for the life time since the Kinoshita-Lee-Nauenberg
theorem [10] is not in effect. Consequently, powers of the
large logarithm ln(mµ/me) do not cancel in the calcu-
lation of the electromagnetic corrections to the spectrum.
This becomes obvious when fitting the spectrum corrected
to order O(α) to the Michel spectrum: the resulting effec-
tive Michel parameter differs by about 6% from its lowest-
order value [11], a correction which is more than 10 times
larger than the corresponding correction to the muon life
time. At order O(α2) the radiative corrections may be ex-
pected to be of the order of several per-mille, i.e. they
could possibly be visible in present data already, not to
speak of future high-precision experiments.

Given this perspective we present in this note the cal-
culation of the hadronic contribution to the energy spec-
trum of the final-state electron in muon decay. This contri-
bution is not expected to be logarithmically enhanced, but
nonetheless is required for an eventual complete second-
order calculation. The details of the calculation are given
in the following sections.

2. We consider the decay of a muon in its rest system,

µ−(p) → e−(p′) + νµ(q1) + ν̄e(q2) , (1)

and define momenta as shown in (1). The momentum
transferred from the charged particles to the neutrino pair,
q = q1 + q2, is then given by

q = p− p′ . (2)

It is convenient to introduce the dimensionless variable

x =
2Ee

m
(3)

to denote the ratio of the energy of the decay electron Ee

with respect to the muon mass m. Neglecting the electron
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mass, p′2 = 0, we see that the kinematically allowed range
is

0 ≤ x ≤ 1 , (4)

and one has
q2 = (1− x)m2 . (5)

The matrix element M for (1) in the Fermi theory can
be calculated most conveniently after a Fierz rearrange-
ment factorizing the amplitude into a current Jµ which
describes the µe transition and a current for the νµνe in-
teraction. After squaring and summing (averaging) over
spins, one can write |M|2 as a product of two correspond-
ing tensors. The one pertaining to the neutrino interac-
tion can be integrated over the unobserved momenta of
the neutrinos independently, leading to

Nµν = qµqν − gµνq
2 . (6)

This tensor will be contracted with

Cµν = J∗
µJν , with Jµ = ūe(p′)Λµ(q)uµ(p) , (7)

where Λµ(q) is the effective vertex of the four-fermion in-
teraction. At the lowest order, Λµ(q) is identified with

Λ0
µ =

GF√
2
γµ (1− γ5) , (8)

where GF = (1.16637 ± 0.00001) × 10−5 GeV−2 is the
Fermi coupling constant.

Hadronic contributions to the radiative corrections to
the current Jµ at order O(α2) are described by the Feyn-
man diagrams shown in Fig. 1. The hadronic vacuum po-
larization

Πhad
µν (k2) =

−iΠhad(k2)
k2 + i0

(
gµν − kµkν

k2

)
(9)

is inserted in a one-loop vertex correction. The vacuum
polarization can be related to the measured cross section
for e+e− → hadrons with the help of a dispersion relation

Πhad(k2) =
α

3π

∫ ∞

sthr

ds
s
R(s)

k2

k2 − s+ i0
, (10)

where

R(s) =
σ(s; e+e− → hadrons)
σ(s; e+e− → µ+µ−)

(11)

and the integration starts at the two-pion threshold, sthr =
4m2

π. Therefore, the calculation corresponds to a one-loop
vertex correction with a photon of mass

√
s, i.e. using a

propagator

−i
k2 − s+ i0

(
gµν − kµkν

k2

)
. (12)

The result can be written in the form

Λµ(q) =
α

3π

∫ ∞

sthr

ds
s
R(s)Λ̃µ(s; q,m2) (13)

where the vector function Λ̃µ can be decomposed into
Lorentz-covariants as

Λ̃µ(s; q,m2) = γµωL

[
1 + f̃(s; q2,m2)

]
+
pµ + p′

µ

m
ωR

×g̃+(s; q2,m2) +
qµ

m
ωRg̃−(s; q2,m2) , (14)

with ωR,L = (1±γ5)/2. The calculation is straightforward
and corresponds to that of the one-loop vertex correction
in QED, with the difference that (i) the exchanged “pho-
ton” is massive with mass

√
s, (ii) the coupling is purely

left-handed, and (iii) the two fermion lines have different
masses. In fact, except for small q2 the electron mass can
safely be neglected. Explicit results for the form factors
f̃ and g̃± are given in the appendix. After contraction
with the neutrino tensor Nµν , (6), only the form factors
f̃(s; q2,m2) and g̃+(s; q2,m2) will remain in the final re-
sult.

Performing the dispersion integral one obtains the
form factors

f(q2,m2) =
α

3π

∫ ∞

sthr

ds
s
R(s)f̃(s; q2,m2) ,

g+(q2,m2) =
α

3π

∫ ∞

sthr

ds
s
R(s)g̃+(s; q2,m2) .

(15)

Since we are interested in the O(α2) correction, it is suf-
ficient to keep only terms of first order in f and g+ in the
decay spectrum which then can be written in the form

1
Γ0

dΓ
dx

= 2x2 [(3− 2x) (1 + 2f(x)) + xg+(x)]

=
1
Γ0

dΓ
dx

∣∣∣∣
Born

(1 + r(x)) ,
(16)

with

Γ0 =
G2

Fm
5

192π3 ,
dΓ
dx

∣∣∣∣
Born

= 2x2(3− 2x)Γ0 , (17)

and
r(x) = 2f(x) +

x

3− 2x
g+(x) , (18)

where f(x) ≡ f
(
(1− x)m2,m2

)
and g+(x) ≡

g+
(
(1− x)m2,m2

)
.

3. For our purpose, the function R(s) describing the
hadronic cross section of e+e− annihilation can be mod-
eled by a combination of experimental data and analyti-
cal results from perturbative QCD. Since we are going to
calculate a small correction, it is not necessary to invoke
the most sophisticated treatment as needed, for exam-
ple, when calculating the hadronic contribution to the fine
structure constant α(mZ). At low s < 2.5 GeV2 we use
experimental data from ALEPH parametrized in [12] or
provided directly by ALEPH [13] from a measurement of
the isovector τ spectral function. These data are comple-
mented by the resonance contributions from the isospin-
0 light mesons ω and φ. Above s = 2.5 GeV2 we use
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Fig. 1a–c. Feynman diagrams describ-
ing a self energy insertion in the pho-
tonic one-loop corrections to the µe ver-
tex

the QCD prediction for R(s) due to light quarks at order
O(αs).

Since the data in the cc̄-channel published by various
groups are in a large part of the energy range inconsistent,
we apply in this case the QCD-based approach of analytic
continuation by duality [14]. The data region can be cho-
sen to extend only over the sub-threshold resonances, i.e.
one can calculate the contribution coming from the cc̄-
channel by a combination of data describing the J/Ψ(1S)
and J/Ψ(2S) resonances and the prediction of perturba-
tive QCD. We checked that the results obtained this way
are consistent with those of the standard approach using
the new BES data [15].

The correction to the total decay rate,

∆Γ =
∫ 1

0
dx

dΓ
dx

, (19)

was calculated before in [5]. Our result,

∆Γhad � −0.0421
(α
π

)2
Γ0 , (20)

agrees perfectly with the corresponding number −0.042
given in [5]. The resulting corrections to the spectrum (16)
are shown in Fig. 2. At small x, the corrections are posi-
tive, but the correction to the total decay width is domi-
nated by the negative values at x � 0.18. The dependence
of the form factors on x is to a very good approximation
linear:

f(x) � (0.0071− 0.0378x)
(α
π

)2
Γ0 ,

g+(x) � −0.0067
(α
π

)2
Γ0 , (21)

r(x) � (0.0148− 0.0813x)
(α
π

)2
Γ0 .

For g+, the coefficient of the term linear in x is very small
and is therefore omitted. Note that this behaviour cannot
be described by a simple redefinition of the Michel param-
eter. Since GF is a free parameter in the Fermi theory,
the correction to the total decay width is not observable;
it can be absorbed by a suitable redefinition of the Fermi
constant. However, the modification of the spectrum is, in
principle, observable.

The correction to the total decay rate can be split up
into the various contributions to the hadronic vacuum po-
larization, as shown in Table 1. The form factor f of the

r

g+

f

x

10.80.60.40.20

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.1

Fig. 2. Results for the form factors f , g+ and r defined in
(15), (18)

Table 1. Contributions to the corrections of the total decay
rate

Contributions to ∆Γhad

1 0 < s < 0.2 GeV2 −0.00129 3.1%
2 ω −0.00223 5.3%
3 φ −0.00264 6.3%
4 0.2 < s < 2.5 GeV2 −0.02804 66.6%
5 s > 2.5 GeV2 −0.00564 13.4%
6 J/Ψ(1S) −0.00066 1.6%
7 J/Ψ(2S) −0.00017 0.4%
8 charm, s > 4m2

c −0.00138 3.3%
9 bottom, s > 4m2

b −0.00003 0.1%

Sum −0.04207 100%

γµ term contributes −0.0387, whereas the correction due
to g+, −0.0033, is smaller by one order of magnitude. The
total correction (the contributions due to f and g+) is
saturated to 81% (80.8% and 89%, respectively) by the
contributions from small s below 2.5 GeV2. Only 5% of
∆Γhad is due to charmed states, and the bottom sector is
completely negligible.

The numerical results given here take into account
the O(αs) QCD corrections in R(s). Using the leading-
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order expression for R(s), i.e. without the correction fac-
tor (1 + αs/π) in the light-quark contribution at large s
and the charm-quark contribution, the final result would
be −0.04149, i.e. changed by 1.4%. We conclude that a
more refined treatment which would include higher orders
of perturbative QCD and mass-dependent corrections in
the heavy-quark sector is not required for our purpose.

The evaluation of the dispersion integrals has been per-
formed using standard numerical integration routines up
to a value smax of several hundred GeV2. The contribution
above this value was obtained with the help of Maple us-
ing the asymptotic expansion of the form factors for large
s (see (35)–(37) in the Appendix). For intermediate val-
ues of s, good consistency of both procedures has been
verified.

4. The same set of formulae can be used to calculate the
contributions from a µ+µ− or a τ+τ− loop insertion. We
find that the tau loop gives a very small contribution,
about 1.5% of the one from the muon loop, in agreement
with [5]. Therefore we give only results for the muon loop,
where one has to insert in (15)

R(s) →
(
1 +

2m2

s

) √
1− 4m2

s
and sthr → 4m2 .

(22)
With this input we obtain

∆Γmuon � −0.0364
(α
π

)2
Γ0 , (23)

which perfectly agrees with the exact result given in [5].
The results of a linear fit of the form factors for the muon-
loop insertion are:

fmuon(x) � (0.0130− 0.0414x)
(α
π

)2
Γ0 ,

g+,muon(x) � (−0.0090 + 0.0005x)
(α
π

)2
Γ0 , (24)

rmuon(x) � (0.0267− 0.0898x)
(α
π

)2
Γ0 .

5. To summarize, we found that the energy spectrum
in the decay of an unpolarized muon is corrected by a
smooth function in x due to hadronic contributions at or-
der O(α2). At both ends of the spectrum no particularly
outstanding enhancement or suppression is observed.

The calculations described in this paper constitute
only the most straightforward part of a full calculation
which would be necessary before the expected future high-
precision data can be confronted with theoretical predic-
tions. This will not only be necessary for a meaningful
test of the electroweak Standard Model, but also when
searching for physics beyond the Standard Model [16].

Appendix

The form factors introduced in (14) are given explicitly in
the following:

f̃(s; q2,m2)

= − α

4π

{
2(m2 − q2 − s)

[
1 +

q2s

(m2 − q2)2

]
C0

+
[

2q2s

(m2 − q2)2
− 2q2

(m2 − q2)
+ 1

]
B0(q2;m2, 0)

+
[

2q2

m2 − q2 − s(m2 + q2)
(m2 − q2)2

]
B0(m2;m2, s)

+
(
1
s

− 1
m2 − q2

)
A(s) + 2

}
+f̃SE(s; q2,m2) , (25)

g̃+(s; q2,m2)

= − α

4π
m2

q2

{
2q2s

m2 − q2

[
3q2s

(m2 − q2)2
+ 2

]
C0

− q2

m2 − q2

[
6q2s

(m2 − q2)2
+ 1

]
B0(q2;m2, 0)− q2

m2 − q2

+
q2

m2 − q2

[
6m2s

(m2 − q2)2
− s(4m2 − q2)
m2(m2 − q2)

+ 2
]

×B0(m2;m2, s) +
q2

m2 − q2

[
3

m2 − q2 − 1
m2

]
A(s)

+
[

1
m2 − q2 − 1

m2

]
A(m2)

}
, (26)

g̃−(s; q2,m2)

=
α

4π
m2

q2

{
2q2s

m2 − q2

[
3q2s

(m2 − q2)2
+

2s
m2 − q2 + 2

]
C0

− q2

m2 − q2 +
1

m2 − q2

[
− 6m2q2s

(m2 − q2)2
+

2q2s

m2 − q2

+2m2 − 3q2

]
B0(q2;m2, 0) +

q2

m2 − q2

[
6m2s

(m2 − q2)2

+
s

m2 − q2 +
s

m2 + 2
]
B0(m2;m2, s) +

q2

m2 − q2

×
(

1
m2 +

3
m2 − q2

)
A(s) +

(
1
m2 +

1
m2 − q2

)
A(m2)

}
,

(27)

where C0 = C0(m2, 0, q2;m2, s, 0) is the three-point inte-
gral (cf. Fig. 1a), defined in (34) below. B0 and A denote
the tadpole and two-point integrals [17,18], respectively
(see (30)–(32) below).

Self-energy diagrams (cf. Fig. 1b, c) contribute to the
coefficient of γµ only and are given by

f̃SE(s; q2,m2)

=
α

8π

{
2(s+ 2m2)

∂

∂p2B0(p2;m2, s)
∣∣∣∣
p2=m2

− s

m2B0(m2;m2, s)− s+m2

sm2 A(s)
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+
1
m2A(m

2) + 1 +
3
2

}
, (28)

where the last term, 3
2 , comes from the self energy on

the massless (electron) leg. Using recurrence relations [19]
(see also Appendix A of [20]), the derivative in (28) can
be represented as

∂

∂p2B0(p2;m2, s)
∣∣∣∣
p2=m2

=
1

m2(s− 4m2)

[
−(s− 3m2)B0(m2;m2, s)

+A(m2)−
(
1− 2m2

s

)
A(s) +m2

]
. (29)

The required tadpole and two-point integrals are [17,18]

A(m2) = m2
[
−∆− 1 + ln

m2

µ2
DR

]
, (30)

B0(m2;m2, s) = ∆+ 2− ln
m2

µ2
DR

− s

2m2 ln
s

m2

+
s

2m2 βs ln
(
1 + βs

1− βs

)
, (31)

B0(q2;m2, 0) = ∆+ 2− ln
m2

µ2
DR

+
m2 − q2

q2

× ln
(
m2 − q2

m2

)
, (32)

where

βs ≡
√
1− 4m2

s
, (33)

and µDR is the scale parameter of dimensional regulariza-
tion. In (30)–(32), terms containing ∆ = 1/ε − lnπ − γE
represent the ultraviolet singularities which cancel in the
final results (25)–(27).

Finally, we need the three-point scalar function C0 [17]
for positive values of q2. In this case it can be written in
the following form:

C0(m2, 0, q2;m2, s, 0)

=
1

m2 − q2

{
Li2

(
1− m2

q2

)
+ Li2

(
− (m2 − q2)2

sq2

)
−Li2

[
1
2

(
1− m2

q2

)
(1 + βs)

]
− Li2

[
1
2

(
1− m2

q2

)
(1− βs)

]

+
1
2
ln

[
(m2 − q2)2

sm2

]
ln

[
1 +

(m2 − q2)2

sq2

]
− 1

2
ln
m2

q2

× ln
m2

s
+

1
2
ln

[
m2 + q2 + (q2 −m2)βs

m2 + q2 − (q2 −m2)βs

]
ln

(
1 + βs

1− βs

) }
.

(34)

For convenience, we also give asymptotic expansions
of the form factors (25)–(27) valid for large s,

4π
α
f̃ = − 1

3s(q2)2

{
(m2 − q2)2(m2 + 2q2) ln

(
m2 − q2

m2

)
+(q2)2(3m2 − 2q2) ln

s

m2 + q2
[
m4 − 9

2
m2q2

−11
3
(q2)2

]}
+

1
6s2(q2)3

{
(m2−q2)4(m2+q2)

× ln
(
m2−q2

m2

)
− (q2)3

[
35m4−3m2q2+(q2)2

]
× ln

s

m2 + q2
[
m8 − 5

2
m6q2 +

697
12

m4(q2)2

+
11
4
m2(q2)3 − 13

12
(q2)4

]}
+O(s−3) , (35)

4π
α
g̃+ = −m2

3s
+

m2

6s2(q2)3

{
(m2 − q2)4 ln

(
m2 − q2

m2

)
+(q2)3(4m2 − q2) ln

s

m2 + q2
[
m6 − 7

2
m4q2

−8
3
m2(q2)2 +

5
12

(q2)3
]}

+O(s−3) , (36)

4π
α
g̃− =

4m2

3s(q2)3

{
(m2−q2)3 ln

(
m2−q2

m2

)
+ (q2)3 ln

s

m2

+q2
[
m4 − 5

2
m2q2+

7
12

(q2)2
]}

− m2

6s2(q2)4

×
{
(m2 − q2)4(6m2 − 5q2) ln

(
m2 − q2

m2

)

−(q2)4(26m2 − 5q2) ln
s

m2 + q2

[
6m8 − 26m6q2

+
87
2
m4(q2)2 − 25

6
m2(q2)3 +

23
12

(q2)4
]}

+O(s−3) . (37)

These expressions turned out to be useful for the numer-
ical evaluation of the dispersion integrals in the large-s
region.

The asymptotic values for x = 0 are as follows:

4π
α

f̃

∣∣∣∣
x=0

= − 1
12m4

{
(s+2m2)(7s−22m2)

1
βs

ln
(
1+βs

1−βs

)
+(18m4−6m2s−7s2) ln

s

m2

+m2(33m2 + 14s)

}
,
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4π
α
g̃+

∣∣∣∣
x=0

=
1

4m4

{
s(2m2−s)βs ln

(
1+βs

1−βs

)
+ (2m4

−4m2s+s2) ln
s

m2 +m2(5m2−2s)

}
,

4π
α
g̃−

∣∣∣∣
x=0

=
1

12m4

{
s(2m2 − 5s)βs ln

(
1 + βs

1− βs

)
− (6m4

+12m2s− 5s2) ln
s

m2 +m2(9m2 − 10s)

}
.

Note that there are no contributions of the order O(x lnx).
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